基于铜死亡相关长链非编码RNA的子宫颈癌预后模型构建及药物敏感性分析Construction of prognostic model and drug sensitivity analysis of cervical cancer based on cuproptosis-related long noncoding RNAs
张玉俊,赵璇,朱琳,地力亚尔·吾斯曼江,王岩
摘要(Abstract):
目的 基于铜死亡相关长链非编码RNA(cuproptosis-related long noncoding RNA,CRL)构建子宫颈癌预后模型并分析不同风险组间药物敏感性差异,为子宫颈癌患者预后预测及个体化治疗提供理论依据。方法 从癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中下载304例子宫颈癌患者的基因表达谱、突变数据和临床数据,使用随机抽样的方法将患者分为训练集(n=152例)和测试集(n=152)。采用Pearson相关性分析鉴定CRL。应用单因素Cox、LASSO和多因素Cox回归分析在训练集中构建CRL风险评分模型,在测试集和整个队列中进行验证,并根据风险评分中位数将训练集和测试集患者分为高风险组(训练集76例和测试集83例)和低风险组(训练集76例和测试集69例)。使用Kaplan-Meier(K-M)生存分析、受试者工作特征(receiver operating characteristic,ROC)曲线、单因素与多因素Cox回归和主成分分析(principal component analysis,PCA)评估CRL风险评分模型,并构建结合临床病理特征和CRL风险评分模型的列线图和校准曲线。通过基因集富集分析(gene set enrichment analysis,GSEA)探索该模型的潜在分子机制。使用Spearman相关分析探讨免疫细胞浸润与风险评分之间的相关性。绘制子宫颈癌患者基因突变图谱,分析CRL风险评分模型与体细胞变异之间的相关性。分析免疫治疗药物的敏感性和20种化疗药物在不同风险群体中的半抑制浓度(half maximal inhibitory concentration,IC_(50))值差异。结果 共获得704个CRL,经单因素Cox、LASSO和多因素Cox回归分析最终构建包含6个CRL(AC103591.4、AC021851.1、MNX1-AS1、FAM27E3、AL603832.1和AC097505.1)的风险评分预测模型。K-M生存曲线、ROC曲线下面积(area under the curve,AUC)和PCA分析均验证该模型具有良好的预测能力。多因素Cox回归显示,CRL风险评分可作为独立预后因子(P<0.05)。列线图对子宫颈癌患者的1、3和5年总生存(overall survival,OS)具有较好的预测能力。GSEA结果显示,高风险组与癌症通路相关。免疫细胞浸润结果表明,多数免疫细胞与CRL风险评分呈正相关(均r>0,均P<0.05)。免疫检查点分析结果显示,低风险组患者免疫检查点表达较高。基因突变图谱结果表明,高低风险组间肿瘤突变负荷(tumor mutation burden,TMB)比较,差异无统计学意义(P>0.05)。药物敏感性分析结果显示,免疫治疗药物细胞毒T淋巴细胞相关抗原4对低风险组患者疗效较好,阿卡地新、二甲基草酰甘氨酸、多柔比星、索拉非尼和阿糖胞苷5种药物的IC_(50)值在高低风险组间比较,差异均具有统计学意义(均P<0.05)。结论 6个CRL的风险评分特征可独立预测子宫颈癌患者的预后,有助于阐明子宫颈癌中CRL的机制,并为患者临床个体化治疗提供理论指导。
关键词(KeyWords): 子宫颈癌;铜死亡;长链非编码RNA;药物敏感性
基金项目(Foundation): 省部共建中亚高发病成因与防治国家重点实验室开放课题项目(SKL-HIDCA-2020-33,SKL-HIDCA-2021-13);; 新疆维吾尔自治区自然科学基金项目(2021D01C379)
作者(Author): 张玉俊,赵璇,朱琳,地力亚尔·吾斯曼江,王岩
DOI: 10.13267/j.cnki.syzlzz.2024.019
参考文献(References):
- [1]彭巧华,吕卫国. 2022年第1版《NCCN子宫颈癌临床实践指南》解读[J].实用肿瘤杂志, 2022, 37(3):205-214.
- [2]刘兴华,林泳煌,陈东宇,等.基于自噬相关lncRNA建立子宫颈癌预后风险评估模型[J].实用肿瘤杂志,2022, 37(6):514-521.
- [3] Canfell K, Kim JJ, Brisson M, et al. Mortality impact of achieving WHO cervical cancer elimination targets:a comparative modelling analysis in 78 low-income and lower-middle-income countries[J]. Lancet, 2020,395(10224):591-603.
- [4]裘淼,吕梦宇.子宫颈癌肺转移灶经气道咳出一例[J].实用肿瘤杂志, 2022, 37(3):271-273.
- [5] Chopra S, Gupta M, Mathew A, et al. Locally advanced cervical cancer:a study of 5-year outcomes[J]. Indian J Cancer, 2018, 55(1):45-49.
- [6] Cohen AC, Roane BM, Leath CA 3rd. Novel therapeutics for recurrent cervical cancer:moving towards personalized therapy[J]. Drugs, 2020, 80(3):217-227.
- [7] Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100.
- [8] Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100.
- [9] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586):1254-1261.
- [10] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016,17(1):47-62.
- [11] Zhang XX, Yu J, Hu J, et al. 13-lncRNAs signature to improve diagnostic and prognostic prediction of hepatocellular carcinoma[J]. Comb Chem High Throughput Screen, 2021, 24(5):656-667.
- [12] Polishchuk EV, Merolla A, Lichtmannegger J, et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals,protects hepatocytes from copper-induced apoptosis[J].Gastroenterology, 2019, 156(4):1173-1189.
- [13] Aubert L, Nandagopal N, Steinhart Z, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer[J]. Nat Commun, 2020, 11(1):3701.
- [14] Matsushita S, Mochizuki S, Sakurai K, et al. Prevention of copper-induced cell death by GC-rich DNA oligomers in murine macrophage-like RAW264.7 cells[J]. Commun Integr Biol, 2015, 8(6):e1017173.
- [15] Dong JJ, Wang X, Xu CC, et al. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson’s disease[J]. Cell Death Dis, 2021, 12(1):87.
- [16] Ren XY, Li YC, Zhou Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox Biol, 2021, 46:102122.
- [17] Jiang ZJ, Li JY, Feng WQ, et al. A ferroptosis-related lncRNA model to enhance the predicted value of cervical cancer[J]. J Oncol, 2022, 2022:6080049.
- [18] Hortobagyi GN, Connolly JL, D’Orsi CJ, et al. Breast[M]//Amin MB, Edge S, Greene F, et al. American Joint Committee on Cancer. AJCC cancer staging manual. 8th ed.New York:Springer. 2017.
- [19]孟洁琼,范柳倩,肖飞盈.前哨淋巴结术中冷冻切片与印片细胞学诊断子宫颈癌与子宫内膜癌转移的评价分析[J].实用肿瘤杂志, 2022, 37(1):77-81.
- [20] Liu BQ, Zhai JB, Wang WY, et al. Identification of tumor microenvironment and DNA methylation-related prognostic signature for predicting clinical outcomes and therapeutic responses in cervical cancer[J]. Front Mol Biosci,2022, 9:872932.
- [21] Mohebi M, Ghafouri-Fard S, Modarressi MH, et al. Expression analysis of vimentin and the related lncRNA network in breast cancer[J]. Exp Mol Pathol, 2020, 115:104439.
- [22] Pan JH, Zhang XY, Fang XD, et al. Construction on of a ferroptosis-related lncRNA-based model to improve the prognostic evaluation of gastric cancer patients based on bioinformatics[J]. Front Genet, 2021, 12:739470.
- [23] Chen LQ, Ma G, Wang PL, et al. Establishment and verification of prognostic model for gastric cancer based on autophagy-related genes[J]. Am J Cancer Res, 2021,11(4):1335-1346.
- [24] Shuai Y, Ma ZH, Liu WT, et al. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2[J]. Mol Cancer, 2020, 19(1):6.
- [25] Wei XN, Choudhury Y, Lim WK, et al. Recognizing the continuous nature of expression heterogeneity and clinical outcomes in clear cell renal cell carcinoma[J]. Sci Rep,2017, 7(1):7342.
- [26] Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J].Nat Rev Drug Discov, 2019, 18(3):197-218.
- [27] Dragomir MP, Kopetz S, Ajani JA, et al. Non-coding RNAs in GI cancers:from cancer hallmarks to clinical utility[J]. Gut, 2020, 69(4):748-763.
- [28] Jiang N, Zhang XY, Gu XJ, et al. Progress in understanding the role of lncRNA in programmed cell death[J]. Cell Death Discov, 2021, 7(1):30.
- [29] Trifanescu O, Topliceanu F, Gusoiu B, et al. 24P Reactive oxygen species and vascular endothelial growth factor(VEGF)in ovarian cancer patients[J]. Ann Oncol, 2019,30(1_suppl):i8-9.
- [30] Vidal J, Bellosillo B, Santos Vivas C, et al. Ultra-selection of metastatic colorectal cancer patients using next-generation sequencing to improve clinical efficacy of anti-EGFR therapy[J]. Ann Oncol, 2019, 30(3):439-446.
- [31] Liu TR, Ma WJ, Xu HN, et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma[J]. Nat Commun,2018, 9(1):3439.
- [32] Incio J, Ligibel JA, McManus DT, et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2[J]. Sci Transl Med, 2018, 10(432):eaag0945.
- [33] Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4(VEGFR-3)and KDR(VEGFR-2)receptor tyrosine kinases[J]. EMBO J, 1996, 15(2):290-298.
- [34] Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis[J].Curr Opin Cell Biol, 2009, 21(2):154-165.
- [35] Ueda M, Terai Y, Yamashita Y, et al. Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas[J]. Int J Cancer,2002, 98(3):335-343.
- [36] Xu ZJ, Jiang SX, Ma J, et al. Comprehensive analysis of ferroptosis-related LncRNAs in breast cancer patients reveals prognostic value and relationship with tumor immune microenvironment[J]. Front Surg, 2021, 8:742360.
- [37] Liu JC, Zhang ZP, Liu XD, et al. Predictive role of ferroptosis-related long non-coding RNAs in bladder cancer and their association with immune microenvironment and immunotherapy response[J]. World J Surg Oncol, 2022,20(1):47.
- [38] Shibao S, Minami N, Koike N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3):343-354.
- [39] Qi XL, Fu YP, Sheng J, et al. A novel ferroptosis-related gene signature for predicting outcomes in cervical cancer[J]. Bioengineered, 2021, 12(1):1813-1825.